sav_logo
Vedecké oddelenia
Vedecké oddelenia
Organizačná štruktúra
Vedenie
Správna rada
Dozorná rada
Vedecká rada
MPV
Ekonomické oddelenie
Odborový zväz
Projekty
Patenty
Semináre
Doktorandské štúdium
Dokumenty
Ochrana osobných údajov
Prístup k informáciám
Linky
Časopis Biologia[IF: 1,500]
Biologia
Mikrobiálna genetikaBarak.jpg

RNDr. Imrich Barák, DrSc.

vedúci oddelenia

Apidológia a apiterapia

Ing. Juraj Majtán, DrSc., MBA (vedúci pracovnej skupiny)

Nehojace sa rany predstavujú závažný celosvetový problém a podieľajú sa významným percentom na morbidite a mortalite veľkej skupiny populácie. Jeden z mechanizmov zodpovedných za zlyhanie procesu hojenia rany je nekontrolovateľný zápalový proces sprevádzaný bakteriálnou kolonizáciou rany. Narastajúci výskyt rezistentných mikroorganizmov a tvorba biofilmu v ranách umožnili rozvoj alternatívnych biomedicínskych stratégií. Medzi takéto terapie patrí aj apiterapia, t.j. používanie včelích produktov, vrátane medicínskeho medu, propolisu a materskej kašičky v procese hojenia chronických rán.

Laboratórium apidológie a apiterapie sa orientuje na apimedicínsky výskum a charakterizáciu mechanizmov v hojacom procese a tvorbe nového tkaniva. Okrem priameho antibakteriálneho a antibiofilmového pôsobenia, včelie produkty sa vyznačujú protizápalovým a imunomodulačným účinkom. Práve vplyv včelích produktov na bunky podieľajúce sa v procese hojenia (monocyty, keratinocyty a fibroblasty) predstavuje v súčasnosti atraktívnu oblasť výskumu. Laboratórium sa v spolupráci s Lekárskou fakultou Slovenskej zdravotníckej univerzity podieľa aj na translačnom výskume a to prostredníctvom in vivo experimentov na animálnom modely alebo priamym klinickým použitím medu v manažmente hojenia rán. Dôležitou súčasťou výskumu v našom laboratóriu je aj kvalita včelích produktov so zreteľom na obsah ich jednotlivých biologicky aktívnych zložiek, kde sa zameriavame na vývoj nových kvalitatívnych/kvantitatívnych testov. Prirodzene zvýšený obsah včelou sekrétovaných biologicky aktívnych látok v mede a materskej kašičke neochraňuje len včelu a jej potomstvo, ale umožňuje aj ich širšie  terapeutické využitie.

Mikrobiálna genetika

RNDr. Imrich Barák, DrSc. (vedúci pracovnej skupiny)

Kompletné pochopenie procesov v organizmoch na molekulárnej úrovni si vyžaduje poznanie vzťahu štruktúra - funkcia pre všetky proteíny. Bacillus subtilis je medzinárodne uznávaný modelový organizmus, ktorého fyziológia, biochémia a genetika sú študované niekoľko desaťročí. Oddelenie mikrobiálnej genetiky rieši projekty, ktorých cieľom je štúdium proteínov zúčastňujúcich sa základných procesov Bacillus subtilis a to bunkové delenie, sporulácia a programovaná bunková smrť. Asymetrické delenie buniek je nielen základným javom vo vývoji mnohobunkových organizmov, ale zohráva tiež kľúčovú úlohu vo vývoji baktérií, ktoré vstupujú do špecifického diferenciačného procesu nazývaného sporulácia. Projekt sa sústreďuje hlavne na proteíny Spo0A, SpoIIE, DivIVA, MinC, MinD, RodZ a ich komplexy. V prípade programovanej bunkovej smrti sa orientujeme na biochemické, genetické a štrukturálne štúdie toxín-antitoxínového systému SpoIISA-SpoIISA. Tieto proteíny boli prvýkrát identifikované ako súčasť sporulačného procesu Bacillus subtilis. Genetické a biochemické experimenty a hlavne vyriešenie terciárnej štruktúry uvedených proteínov budú významným príspevkom k pochopeniu základných bunkových procesov baktérií.

Oddelenie študuje aj proteín-proteínové interakcie sporulačných Cot proteínov a ich schopnosti vytvárať nanovrstvy. Cieľom tohto štúdia je vývoj nástrojov na vytvorenie jednoduchého a súčasne komplexného nano "array" systému schopného vytvárať súvislé vrstvy z jednotlivých proteínových molekúl až po nanočastice. Použitie tejto technológie by malo byť overené v niekoľkých prvotných skúšobných aplikáciách napr. v príprave nano-anorganických materiálov ako aj v nových bio-nanotechnologických procesoch.

Syntetická mikrobiológia

Mgr. Ján Jamroškovič, PhD. (vedúci pracovnej skupiny)

Syntetická biológia je multidisciplinárny a rýchlo sa rozvíjajúci vedecký odbor, ktorý študuje biologické funkcie prirodzene sa vyskytujúcich javov a aplikuje túto znalosť v genetickom inžinierstve. Hlavnou úlohou tohto odboru je príprava mikroorganizmov s konkrétnymi vlastnosťami s cieľom syntetizovať rôzne produkty, zvýšiť udržateľnosť v bioekonomike a poskytnúť riešenia pre environmentálne výzvy. Tieto metódy zvyčajne kombinujú kaskády génov do genetických sietí, ktoré poskytujú mikroorganizmom nové funkcie. Súčasná výzva v syntetickej biológii spočíva v efektívnom kombinovaní regulačných oblastí v krátkych úsekoch DNA. Jedným z prístupov je použitie DNA štruktúr, ktoré dokážu regulovať aktivitu génov. Príkladom takýchto štruktúr je štvorvláknová DNA nazývaná tiež G-kvadruplex DNA (G4).

Cieľom našej práce je študovať biologické funkcie G4 štruktúr u baktérií, ich vplyv na základné bunkové procesy, ako je replikácia a expresia génov a ich použitie ako nové genetické regulátory. Náš modelový system je Gram-pozitívna sporulujúca baktéria Bacillus subtilis. Je to baktéria hojne využívaná v bioprodukcii a považuje sa za univerzálnu bunkovú továreň pre priemysel, poľnohospodárstvo, biomateriály a medicínu. Už viac ako 60 rokov sa používa ako modelový systém na štúdium základných bunkových procesov a preto výsledky nášho výskumu možu byť priamo aplikovateľné na už existujúce biotechnológie.

Medzinárodná vedecká spolupráca

  1. Biological Physical Sciences Institute, University of York, York, Spojené kráľovstvo
  2. Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Čína
  3. Department Biochemistry & Biotechnology, University of Thessaly, Larissa, Grécko
  4. Department of Chemistry, University of York, York, Spojené kráľovstvo
  5. Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poľsko
  6. DISIT - Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Alessandria, Taliansko
  7. EPFL, Lausanne, Švajčiarsko
  8. Royal Holloway and Bedford New College, London, Spojené kráľovstvo
  9. XFEL, Hamburg, Nemecko

Riešené projekty

  • Ako bunka nájde miesto asymetrického delenia počas sporulácie Bacillus subtilis.
    (VEGA-2/0001/21, Jan 2021 - Dec 2024)
    Zodpovedný riešiteľ: Imrich Barák
  • Implementácia G4 DNA do genetického inžinierstva baktérii.
    (Impulz-IM-2022-62, Nov 2023 - Oct 2028)
    https://impulz.sav.sk/sites/default/files/IMPULZ_Jamroskovic_SK.pdf
    Zodpovedný riešiteľ: Ján Jamroškovič
  • Molekulárny mechanizmus meracieho zariadenia na nájdenie správneho miesta bakteriálneho asymetrického bunkového delenia.
    (APVV-22-0303, Jul 2023 - Jun 2027)
    Zodpovedný riešiteľ: Imrich Barák
  • Nový pohľad na biochemické a funkčné vlastnosti hlavných antibakteriálnych zložiek medu.
    (APVV-21-0262, Jul 2022 - Jun 2025)
    Zodpovedný riešiteľ: Juraj Majtán
  • Štúdium a charakterizácia Min proteínov z Clostridioides difficile.
    (VEGA-2/0033/22, Jan 2022 - Dec 2025)
    Zodpovedný riešiteľ: Naďa Labajová
  • Vývoj nových metodických prístupov na hodnotenie kvality medu.
    (VEGA 2/0022/22, Jan 2022 - Dec 2025)
    Zodpovedný riešiteľ: Juraj Majtán

Vybrané publikácie

  1. Muchova, K., Pospisil, J., Kalocsaiova, E., Chromikova, Z., Zarnovicanova, S., Sanderova, H., Krasny, L., Barak, I.
    Spatio-temporal control of asymmetric septum positioning during sporulation in Bacillus subtilis.
    (2024) J. Biol. Chem. 300(6): 107339-.
  2. Bucekova, M., Godocikova, J., Gueyte, R., Chambrey, C., Majtan, J.
    Characterisation of physicochemical parameters and antibacterial properties of New Caledonian honeys.
    (2023) PLoS One 18(10): e0293730-.
  3. Vetrakova, A., Kaliankova-Chovanova, R., Rechtorikova, R., Krajcikova, D., Barak, I.
    Bacillus subtilis spores displaying RBD domain of SARS-CoV-2 spike protein.
    (2023) Comp. Struct. Biotechnol. J. 21: 1550-1556.
  4. Chromikova, Z., Kaliankova-Chovanova, R., Tamindzija, D., Bartova, B., Radnovic, D., Bernier-Latmani, R., Barak, I.
    Implantation of Bacillus pseudomycoides Chromate Transporter Increases Chromate Tolerance in Bacillus subtilis.
    (2022) Front Microbiol 13: 842623-.
  5. Holmes, S., Kirkwood, H.J., Bean, R., Giewekemeyer, K., Martin, A.V., Hadian-Jazi, M., Wiedorn, M., Oberthuer, D., Marman, H., Adriano, L., Al-Qudami, N., Barak, I., Bari, S., Bielecki, J., Brockhauser, S.
    Megahertz pulse trains enable multi-hit serial femtosecond crystallography experiments at X-ray free electron lasers .
    (2022) Nat Commun 13: 4708-.
  6. Barak, I.
    Bacillus subtilis as a Model Organism to Study Basic Cell Processes.
    (2021) Microorganisms 9: 2459-.
  7. Bodik, M., Krajcikova, D., Hagara, J., Majkova, E., Barak, I., Siffalovic, P.
    Diffraction pattern of Bacillus subtilis CotY spore coat protein 2D crystals.
    (2021) Colloid Surf. B-Biointerfaces 197: 111425-.
  8. Han, H., Round, E., Schubert, R., Gul, Y., Makroczyova, J., Meza, D., Heuser, P., Aepfelbacher, M., Barak, I., Betzel, C., Fromme, P., Kursula, I., Nissen, P., Tereschenko, E., Schulz, J.
    The XBI BioLab for life science experiments at the European XFEL.
    (2021) J. Appl. Crystallogr. 54: 7-21.
  9. Krajcikova, D., Bugarova, V., Barak, I.
    Interactions of Bacillus subtilis Basement Spore Coat Layer Proteins.
    (2021) Microorganisms 9: 285-.
  10. Labajova, N., Baranova, N., Jurasek, M., Vacha, R., Loose, M., Barak, I.
    Cardiolipin-Containing Lipid Membranes Attract the Bacterial Cell Division Protein DivIVA.
    (2021) Int J Mol Sci 22: 8350-.
  11. Majtan, J., Bucekova, M., Kafantaris, I., Szweda, P., Hammer, K., Mossialos, D.
    Honey antibacterial activity: A neglected aspect of honey quality assurance as functional food.
    (2021) Trends Food Sci. Technol. 118: 870-886.
  12. Gacek-Matthews, A., Chromikova, Z., Sulyok , M., Lücking, G., Barak, I., Ehling-Schulz, M.
    Beyond Toxin Transport: Novel Role of ABC Transporter for Enzymatic Machinery of Cereulide NRPS Assembly Line.
    (2020) Mbio 11(5): e01577-.
  13. Muchova, K., Chromikova, Z., Barak, I.
    Linking the Peptidoglycan Synthesis Protein Complex with Asymmetric Cell Division during Bacillus subtilis Sporulation.
    (2020) Int J Mol Sci 21: 4513-.
  14. Pospisil, J., Vitovska, D., Kofronova, O., Muchova, K., Sanderova, H., Hubalek, M., Sikova, M., Modrak, M., Benada, O., Barak, I., Krasny, L.
    Bacterial nanotubes as a manifestation of cell death.
    (2020) Nat Commun 11: 4963-.
  15. Sobolev, E., Zolotarev, S., Giewekemeyer, K., Bielecki, J., Okamoto, K., Reddy, H., Andreasson, J., Ayyer, K., Barak, I., Bari, S., Barty, A., Bean, R., Bobkov, S., Chapman, H., Chojnowski, G.
    Megahertz single-particle imaging at the European XFEL.
    (2020) Commun. Phys. 3: 97-.
  16. Wollman, A., Muchova, K., Chromikova, Z., Wilkinson, A.J., Barak, I., Leake, M.
    Single-molecule optical microscopy of protein dynamics and computational analysis of images to determine cell structure development in differentiating Bacillus subtilis.
    (2020) Comp. Struct. Biotechnol. J. 18: 1474-1486.
  17. Barak, I., Muchova, K., Labajova, N.
    Asymmetric cell division during Bacillus subtilis sporulation.
    (2019) Future Microbiol. 14: 353-363.
  18. Bucekova, M., Jardekova, L., Juricova, V., Bugarova, V., Di Marco, G., Gismondi, A., Leonardi, D., Farkasovska, J., Godocikova, J., Laho, M., Klaudiny, J., Majtan, V., Canini, A., Majtan, J.
    Antibacterial activity of different blossom honeys: new findings.
    (2019) Molecules 24(8): 1573-.
  19. Tamindzija, D., Chromikova, Z., Spaic, A., Barak, I., Bernier-Latmani, R., Radnovic, D.
    Chromate tolerance and removal of bacterial strains isolated from uncontaminated and chromium-polluted environments.
    (2019) World J. Microbiol. Biotechnol. 35: 56-.
  20. Barak, I., Muchova, K.
    The positioning of the asymmetric septum during sporulation in Bacillus subtilis.
    (2018) PLoS One 13: e0201979-.
  21. Bucekova, M., Juricova, V., Monton, E., Martinotti, S., Ranzato, E., Majtan, J.
    Microwave processing of honey negatively affects honey antibacterial activity by inactivation of bee-derived glucose oxidase and defensin-1.
    (2018) Food Chem 240: 1131-1136.
  22. Bucekova, M., Buriova, M., Pekarik, L., Majtan, V., Majtan, J.
    Phytochemicals-mediated production of hydrogen peroxide is crucial for high antibacterial activity of honeydew honey.
    (2018) Sci Rep 8: 9061-.
  23. Bucekova, M., Juricova, V., Di Marco, G., Gismondi, A., Leonardi, D., Canini, A., Majtan, J.
    Effect of thermal liquefying of crystallised honeys on their antibacterial activities.
    (2018) Food Chem 269: 335-341.
  24. Muchova, K., Chromikova, Z., Valencikova, R., Barak, I.
    Interaction of the Morphogenic Protein RodZ with the Bacillus subtilis Min System.
    (2018) Front Microbiol 8: 1-10.
  25. Valencikova, R., Krascsenitsova, E., Labajova, N., Makroczyova, J., Barak, I.
    Clostridial DivIVA and MinD interact in the absence of MinJ.
    (2018) Anaerobe 50: 22-31.
  26. Wiedorn, M., Oberthür, D., Bean, R., Schubert, R., Werner, N., Abbey, B., Apfelbacher, M., Adriano, L., Allahgholi, A., Al-Qudami, N., Andreasson, S., aplin, S., Awel, S., Ayyer, K., Barak, I.
    Megahertz serial crystallography.
    (2018) Nat Commun 9: 4025-.
  27. Barak, I.
    Editorial: Spores and Spore Formers.
    (2017) Front Microbiol 8: 1-2.
  28. Bucekova, M., Sojka, M., Valachova, I., Martinotti, S., Ranzato, E., Szep, Z., Majtan, V., Klaudiny, J., Majtan, J.
    Bee-derived antibacterial peptide, defensin-1, promotes wound re-epithelialisation, in vitro and in vivo.
    (2017) Sci Rep 7: 7340-.
  29. Krajcikova, D., Forgac, V., Szabo, A., Barak, I.
    Exploring the interaction network of the Bacillus subtilis outer coat and crust proteins.
    (2017) Microbiol. Res. 204: 72-80.
  30. Bucekova, M., Majtan, J.
    The MRJP1 honey glycoprotein does not contribute to the overall antibacterial activity of natural honey.
    (2016) Eur. Food Res. Technol. 242: 625-629.
  31. Gabrisko, M., Barak, I.
    Evolution of the SpoIISABC Toxin-Antitoxin-Antitoxin System in Bacilli.
    (2016) Toxins 8: 1-16.
  32. Jamroskovic, J., Chromikova, Z., List, C., Barak, I., Bernier-Latmani, R.
    Variability in DPA and calcium content in the spores of Clostridium species.
    (2016) Front Microbiol 7: 1791-.
  33. Liu, H., Qiao, H., Krajcikova, D., Zhang, Z., Wang, H., Barak, I., Tang, J.
    Physical interaction and assembly of Bacillus subtilis spore coat proteins CotE and CotZ studied by atomic force microscopy.
    (2016) J. Struct. Biol. 195: 245-251.
  34. Liu, H., Krajcikova, D., Wang, N., Zhang, Z., Wang, H., Barak, I., Tang, J.
    Forces and Kinetics of the Bacillus subtilis Spore Coat Proteins CotY and CotX Binding to CotE Inspected by Single Molecule Force Spectroscopy.
    (2016) J. Phys. Chem. B 120: 1041-1047.
  35. Makroczyova, J., Jamroskovic, J., Krascsenitsova, E., Labajova, N., Barak, I.
    Oscillating behavior of Clostridium difficile Min proteins in Bacillus subtilis.
    (2016) MicrobiologyOpen 5: 387-401.
  36. Muchova, K., Chromikova, Z., Bradshaw, N., Wilkinson, A.J., Barak, I.
    Morphogenic Protein RodZ Interacts with Sporulation Specific SpoIIE in Bacillus subtilis.
    (2016) PLoS One 11: 1-21.
  37. Sojka, M., Valachova, I., Bucekova, M., Majtan, J.
    Antibiofilm efficacy of honey and bee-derived defensin-1 on multi-species wound biofilm.
    (2016) J. Med. Microbiol. 65: 337-344.
  38. Valachova, I., Bucekova, M., Majtan, J.
    Quantification of bee-derived peptide defensin-1 in honey by competitive enzyme-linked immunosorbent assay, a new approach in honey quality control.
    (2016) Czech. J. Food Sci. 34(3): 233-243.
  39. Jiang, S., Wan, Q., Krajcikova, D., Tang, J., Tzokov, S.B., Barak, I., Bullough, P.A.
    Diverse supramolecular structures formed by self-assembling proteins of the Bacillus subtilis spore coat.
    (2015) Mol. Microbiol. 97: 347-359.
  40. Liu, H., Krajcikova, D., Zhang, Z., Wang, H., Barak, I., Tang, J.
    Investigating interactions of the Bacillus subtilis spore coat proteins CotY and CotZ using single molecule force spectroscopy.
    (2015) J. Struct. Biol. 192: 14-20.
  41. Melnicakova, J., Becarova, Z., Makroczyova, J., Barak, I.
    Analysis of the Bacillus cereus SpoIIS antitoxin-toxin system reveals its three-component nature.
    (2015) Front Microbiol 6(808): 1-11.
  42. Barak, I.
    Complexity of bacterial phosphorylation interaction network.
    (2014) Front Microbiol 5: 1-2.
  43. Bucekova, M., Valachova, I., Kohutova, L., Prochazka, E., Klaudiny, J., Majtan, J.
    Honeybee glucose oxidase - its expression in honeybee workers and comparative analyses of its content and H2O2-mediated antibacterial activity in natural honeys.
    (2014) Naturwissenschaften 101: 661-670.
  44. Jamroskovic, J., Shao, P.P., Suvorova, E., Barak, I., Bernier-Latmani, R.
    Combined scanning transmission X-ray and electron microscopy for the characterization of bacterial endospores.
    (2014) FEMS Microbiol. Lett. 358: 188-193.
  45. Majtan, J.
    Honey: an immunomodulator in wound healing.
    (2014) Wound Repair Regen 22: 187-192.
  46. Makroczyova, J., Resetarova, S., Florek, P., Barak, I.
    Topology of the Bacillus subtilis SpoIISA protein and its role in toxin–antitoxin function.
    (2014) FEMS Microbiol. Lett. 358: 180-187.
  47. Barak, I., Muchova, K.
    The Role of Lipid Domains in Bacterial Cell Processes.
    (2013) Int J Mol Sci 14: 4050-4065.
  48. Barak, I.
    Open questions about the function and evolution of bacterial Min systems.
    (2013) Front Microbiol 4: 378-.
  49. Majtan, J., Bohova, J., Garcia-Villalba, R., Tomas-Barberan, F.A., Madakova, Z., Majtan, T., Majtan, V., Klaudiny, J.
    Fir honeydew honey flavonoids inhibit TNF-?-induced MMP-9 expression in human keratinocytes: a new action of honey in wound healing.
    (2013) Arch. Dermatol. Res. 305: 619-627.
  50. Melnicakova, J., Derdakova, M., Barak, I.
    A system to simultaneously detect tick-borne pathogens based on the variability of the 16S ribosomal genes.
    (2013) Parasites Vectors 6: 269-.
  51. Muchova, K., Chromikova, Z., Barak, I.
    Control of Bacillus subtilis cell shape by RodZ.
    (2013) Environ. Microbiol 15: 3259-3271.
  52. Qiao, H., Krajcikova, D., Xing, C., Lu, B., Hao, J., Ke, X., Wang, H., Barak, I., Tang, J.
    Study of the interactions between the key spore coat morphogenetic proteins CotE and SpoVID.
    (2013) J. Struct. Biol. 181: 128-135.
  53. Jamroskovic, J., Pavlendova, N., Muchova, K., Wilkinson, A.J., Barak, I.
    An Oscillating Min system in Bacillus subtilis influences asymmetric septation during sporulation.
    (2012) Microbiology-(UK) 158: 1972-1981.
  54. Koharyova, M., Barak, I., Kollarova, M.
    Expresia a purifikácia tioredoxínu 2 a tioredoxínu 3 zo Streptomyces coelicolor A3(2).
    (2012) Chem. Listy 106: 398-403.
  55. Levdikov, V.M., Blagova, E., Rawlings, A.E., Jameson, J., Tunaley, J., Hart, D.J., Barak, I., Wilkinson, A.J.
    Structure of the phosphatase domain of the cell fate determinant SpoIIE from Bacillus subtilis.
    (2012) J. Mol. Biol. 415: 343-358.
  56. Qiao, H., Krajcikova, D., Liu, C., Li, Y., Wang, H., Barak, I., Tang, J.
    The interactions of spore coat morphogenetic proteins studied by single-molecular recognition force spectroscopy.
    (2012) Chem.-Asian J. 7: 725-731.
  57. Florek, P., Levdikov, V.M., Blagova, E., Lebedev, A.A., Skrabana, R., Pavelcikova, P., Resetarova, S., Barak, I., Wilkinson, A.J.
    The Structure and Interactions of SpoIISA and SpoIISB, a Toxin - Antitoxin System in B. subtilis.
    (2011) J. Biol. Chem. 286(8): 6808-6819.
  58. Gundogdu, M.E., Kawai, Y., Pavlendova, N., Ogasawara, N., Errington, J., Scheffers, D.J., Hamoen, L.W.
    Large ring polymers align FtsZ polymers for normal septum formation.
    (2011) Embo J. 30(3): 617-626.
  59. Muchova, K., Wilkinson, A.J., Barak, I.
    Changes of lipid domains in Bacillus subtilis cells with disrupted cell wall peptidoglycan.
    (2011) FEMS Microbiol. Lett. 325(1): 92-98.
  60. Muchova, K., Jamroskovic, J., Barak, I.
    Lipid domains in Bacillus subtilis anucleate cells.
    (2010) Res. Microbiol. 161(9): 783-790.
  61. Pavlendova, N., Muchova, K., Barak, I.
    Expression of Escherichia coli Min system in Bacillus subtilis and its effect on cell division.
    (2010) FEMS Microbiol. Lett. 302(1): 58-68.
  62. Rawlings, A.E., Levdikov, V.M., Blagova, E., Colledge, V.L., Mas, P.J., Tunaley, J., Vavrova, L., Wilson, K.S., Barak, I., Hart, D.J., Wilkinson, A.J.
    Expression of soluble, active fragments of the morphogenetic protein SpoIIE from Bacillus subtilis using a library-based construct screen.
    (2010) Protein Eng. Des. Sel. 23(11): 817-825.
  63. Resetarova, S., Florek, P., Muchova, K., Wilkinson, A.J., Barak, I.
    Expression and localization of SpoIISA toxin during the life cycle of Bacillus subtilis.
    (2010) Res. Microbiol. 161(9): 750-756.
  64. Vavrova, L., Muchova, K., Barak, I.
    Comparison of different Bacillus subtilis expression systems.
    (2010) Res. Microbiol. 161(9): 791-797.
  65. Krajcikova, D., Lukacova, M., Mullerova, D., Cutting, S., Barak, I.
    Searching for Protein-Protein Interactions Within the Bacillus subtilis Spore Coat.
    (2009) J. Bacteriol. 191(10): 3212-3219.
  66. Mullerova, D., Krajcikova, D., Barak, I.
    Interactions between Bacillus subtilis early spore coat morphogenetic proteins.
    (2009) FEMS Microbiol. Lett. 299: 74-85.
  67. Barak, I., Muchova, K., Wilkinson, A.J., O Toole, P.J., Pavlendova, N.
    Lipid spirals in Bacillus subtilis and their role in cell division.
    (2008) Mol. Microbiol. 68: 1315-1327.
  68. Florek, P., Muchova, K., Pavelcikova, P., Barak, I.
    Expression of functional Bacillus SpoIISAB toxin-antitoxin modules in Escherichia coli.
    (2008) FEMS Microbiol. Lett. 278: 177-184.
  69. Kocianova, E., Blaskovic, D., Smetanova, K., Schwarzova, K., Boldis, V., Kostanova, Z., Mullerova, D., Barak, I.
    Comparison of an oligo-chip based assay with PCR method to measure the prevalence of tick-borne pathogenic bacteria in central Slovakia.
    (2008) Biologia 63: 34-37.
  70. Lukacova, M., Barak, I., Kazar, J.
    Role of structural variations of polysacharide antigens in the pathogenicity of Gram-negative bacteria.
    (2008) Clin. Microbiol. Infect. 14: 200-206.
  71. Zweers, J.C., Barak, I., Becher, D., Driessen, A.J., Hecker, M., Kontinen, V.P., Saller, M.J., Vavrova, L., van Dijl, J.M.
    Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes.
    (2008) Microb. Cell. Fact. 7: 10-.
  72. Barak, I., Wilkinson, A.J.
    Division site recognition in Escherichia coli and Bacillus subtilis.
    (2007) Fems Microbiol. Rev. 31: 311-326.
  73. Pavlendova, N., Muchova, K., Barak, I.
    Chromosome Segregation in Bacillus subtilis.
    (2007) Folia Microbiol. 52: 563-572.
  74. Tang, J., Krajcikova, D., Zhu, R., Ebner, A., Cutting, S., Gruber, H.J., Barak, I., Hinterdorfer, P.
    Atomic force microscopy imaging and single molecule recognition force spectroscopy of coat proteins on the surface of Bacillus subtilis spore .
    (2007) J. Mol. Recognit. 20(6): 483-489.
  75. Barbaro, M., Bonfiglio, A., Raffo, L., Alessandrini, P., Facci, P., Barak, I.
    Fully electronic DNA hybridization detection by a standard CMOS biochip.
    (2006) Sens. Actuator B-Chem. 118(1-2): 41-46.
  76. Barbaro, M., Bonfiglio, A., Raffo, L., Alessandrini, P., Facci, P., Barak, I.
    A CMOS, fully integrated sensor for electronic detection of DNA hybridization.
    (2006) IEEE Electron Device Lett. 27(7): 595-597.
  77. Stefankova, P., Perecko, D., Barak, I., Kollarova, M.
    The thioredoxin system from Streptomyces coelicolor.
    (2006) J. Basic Microbiol. 46(1): 47-55.
  78. Alessandrini, A., de Renzi, V., Berti, L., Barak, I., Facci, P.
    Chemically homogeneous, silylated surfaces for effective DNA binding and hybridization.
    (2005) Surf. Sci. 582: 202-208.
  79. Barak, I., Ricca, E., Cutting, S.
    From fundamental studies of sporulation to applied spore research.
    (2005) Mol. Microbiol. 55: 330-338.
  80. Barak, I., Wilkinson, A.J.
    Where asymmetry in gene expression originates.
    (2005) Mol. Microbiol. 57: 611-620.
  81. Blaskovic, D., Barak, I.
    DNA chips for detection of bacterial pathogens.
    (2005) Biologia 60: 239-249.
  82. Blaskovic, D., Barak, I.
    Oligo-chip based assay for detection of tick-borne bacteria causing diseases in humans.
    (2005) FEMS Microbiol. Lett. 243: 473-478.
  83. Kollarova, M., Stefankova, P., Maderova, J., Barak, I., Otwinowski, Z.
    Thioredoxin system of Streptomyces coelicolor.
    (2005) FEBS J. 272: 378-378.
  84. Stefankova, P., Kollarova, M., Barak, I.
    Thioredoxin - Structural and Functional Complexity.
    (2005) Gen. Physiol. Biophys. 24: 3-11.
  85. Stefankova, P., Maderova, J., Barak, I., Kollarova, M., Otwinowski, Z.
    Expression, purification and X-ray crystallographic analysis of thioredoxin from Streptomyces coelicolor.
    (2005) Acta Crystallographica Sect. F-Struct. Biol. Cryst. Commun. 61: 164-168.
  86. Barak, I., Florek, P., Muchova, K., Pribisova, L., Chromikova, Z.
    Bacterial cell division proteins – structure and function.
    (2004) Mater. Struct. 11: 7-11.
  87. Krajcikova, D., Hartley, R.W.
    A new member of the bacterial ribonuclease inhibitor family from Saccharopolyspora erythraea.
    (2004) FEBS Lett. 557(1-3): 164-168.
  88. Muchova, K., Lewis, R.J., Perecko, D., Brannigan, J.A., Ladds, J.C., Leech, A., Wilkinson, A.J., Barak, I.
    Dimer induced signal propagation in Spo0A.
    (2004) Mol. Microbiol. 53(3): 829-842.
  89. Pribisova, L., Muchova, K., Barak, I.
    Cloning and biochemical characterization of DivIVA protein from Bacillus stearotermophilus.
    (2004) Biologia 59: 391-398.
  90. Stahlberg, H., Kutejova, E., Muchova, K., Gregorini, M., Lustig, A., Muller, S.A., Olivieri, V., Engel, A., Wilkinson, A.J., Barak, I.
    Oligomeric structure of the Bacillus subtilis cell division protein DivIVA determined by transmission electron microscopy.
    (2004) Mol. Microbiol. 52: 1281-1290.
  91. Howe, D., Melnicakova, J., Barrows, L.F., Barak, I., Heinzen, R.A.
    Fusogenicity of the Coxiella burnetii parasitophorous vacuole .
    (2003) Ann.NY Acad.Sci. 990: 556-562.
  92. Howe, D., Melnicakova, J., Barak, I., Heinzen, R.A.
    Maturation of the Coxiella burnetii Parasitophorous vacuole requires bacterial protein synthesis but not replication.
    (2003) Cell Microbiol. 5: 469-480.
  93. Kuznetsova, S., Tokarevich, N., Lukacova, M., Koloskov, A., Freidlin, I.
    Influence of inactivated Coxiella burnetii on production of proinflammatory cytokines by blood cells from healthy donors.
    (2003) Ann.NY Acad.Sci. 990: 500-504.
  94. Ladds, J.C., Muchova, K., Blaskovic, D., Lewis, R.J., Brannigan, J.A., Wilkinson, A.J., Barak, I.
    The response regulator Spo0A from Bacillus subtilis is efficiently phosphorylated in Escherichia coli.
    (2003) FEMS Microbiol. Lett. 223: 153-157.
  95. Melnicakova, J., Lukacova, M., Howe, D., Heinzen, R.A., Barak, I.
    Identification of Coxiella burnetii RpoS-dependent promoters.
    (2003) Ann.NY Acad.Sci. 990: 591-595.
  96. Chromikova, Z., Barak, I.
    Gene asymmetry during sporulation process of Bacillus subtilis.
    (2002) Biologia 57: 707-712.
  97. Florek, P., Muchova, K., Barak, I.
    Truncated Spo0A transcription activities in Bacillus subtilis.
    (2002) Biologia 57: 805-811.
  98. Lukacova, M., Melnicakova, J., Quevedo-Diaz, M.A., Barak, I.
    Coxiella burnetii as a query microorganism.
    (2002) Biologia 57: 713-720.
  99. Arigoni, F., Guerout-Fleury, A.M., Barak, I., Stragier, P.
    The SpoIIE phosphatase, the sporulation septum, and the establishment of forespore-specific transcription in Bacillus subtilis: a reassessment.
    (1999) Mol. Microbiol. 31: 1407-1416.
  100. Frandsen, N., Barak, I., Karmazyn-Campelli, C., Stragier, P.
    Transient gene asymmetry during sporulation and establishment of cell specificity in Bacillus subtilis.
    (1999) Genes Dev. 13: 394-399.
  101. Kormanec, J., Homerova, D., Barak, I., Sevcikova, B.
    A new gene, sigG, encoding a putative alternative sigma factor of Streptomyces coelicolor A3(2).
    (1999) FEMS Microbiol. Lett. 172(2): 153-158.
  102. Muchova, K., Lewis, R.J., Brannigan, J.A., Offen, W., Brown, D.P., Barak, I., Youngman, P., Wilkinson, A.J.
    Cloning, purification and crystallisation of discrete domains of Spo0A, the primary sporulation response regulator of Bacillus.
    (1999) Acta Crystallogr. D 55: 671-676.
  103. Barak, I., Prepiak, P., Schmeisser, F.
    Protein localisation and protein-protein contact during asymmetric cell division in Bacillus subtilis.
    (1998) Gen. Physiol. Biophys. 17: 37-40.
  104. Muchova, K., Lewis, R.J., Brannigan, J.A., Schmeisser, F., Wilkinson, A.J., Barak, I.
    Primary sporulation response regulator Spo0A.
    (1998) Gen. Physiol. Biophys. 17: 34-36.
  105. Rezuchova, B., Barak, I., Kormanec, J.
    Disruption of a sigma factor gene, sigF, affects an intermediate stage of spore pigment production in Streptomyces aureofaciens.
    (1997) FEMS Microbiol. Lett. 153(2): 371-377.
  106. Barak, I., Youngman, P.
    SpoIIE mutants of Bacillus subtilis comprises two distinct phenotypic classes consistent with a dual functional role for the SpoIIE protein.
    (1996) J. Bacteriol. 178: 4984-4989.
  107. Barak, I., Behari, J., Olmedo, G., Guzmán, P., Castro, E., Brown, D.P., Walker, D., Westpheling, J., Youngman, P.
    Structure and function of the Bacillus SpoIIE protein and its localization to sites of sporulation septum assembly.
    (1996) Mol. Microbiol. 19: 1047-1060.
  108. Walker, D., Burke, V.J., Barak, I., Avise, J.C.
    A comparison of mtDNA restriction sites vs. control region sequences in phylogeographic assessment of the musk turtle (Sternotherus minor).
    (1995) Mol.Ecol. 4: 365-373.
  109. Barak, I., Koptides, M., Jucovic, M., Sisova, M., Timko, J.
    Construction of a promoter-probe shuttle vector for Escherichia coli and brevibacteria.
    (1990) Gene 95(1): 133-135.
  110. Barak, I.
    Molecular-biological aspects of L-lysine biosynthesis in coryneform bacteria.
    (1989) Biophys. J. 44: 1197-1209.